# CRUISE CONTROLLER DESIGN AND TRAFFIC FLUIDS

**Iasson Karafyllis** 

### **Our team**



Markos Papageorgiou

Dionysis Theodosis

#### **Our team**

The research received funding from the ERC under the European Union's Horizon 2020 Research and Innovation programme/ ERC Grant Agreement n. [833915], project TrafficFluid.

Markos is the Master Mind behind the project!



#### **A New Science**

#### THE SCIENCE OF AUTOMATED VEHICLE TRAFFIC

Foundations built with the help of

Theory of PDEs
Numerical Analysis
Fluid mechanics
Dynamical Systems
Mathematical Physics

#### **A New Science**

#### THE SCIENCE OF AUTOMATED VEHICLE TRAFFIC

but most of all

NONLINEAR CONTROL THEORY

### **The Science of Conventional Traffic**

| Continuity Equation | $\rho_t + (\rho v)_x = 0$      |
|---------------------|--------------------------------|
| Reduced             | LWR:                           |
| Model               | $v = f(\rho),$                 |
|                     | $\rho > 0, v > 0$              |
| Velocity            | ARZ:                           |
| Equation            | $v_t + (v + \rho f'(\rho))v_x$ |
|                     | $=-k(v-f(\rho))$               |
|                     | $\rho > 0, v \in \mathbb{R}$   |
| Derived equation    | $s_t + vs_x = -ks,$            |
|                     | $s = v - f(\rho)$              |
| Constants           | k > 0                          |
| Functions           | $f:(0,+\infty)\to(0,+\infty)$  |
|                     | decreasing                     |

#### **The Science of Conventional Traffic**

Anisotropy → Follow-the-Leader Models

n identical particles of mass 1/n, moving on a straight line

$$\dot{x}_{i} = v_{i}$$

$$\dot{v}_{i} = \frac{n(v_{i-1} - v_{i})}{\tau(ns_{i})} - k\left(v_{i} - f\left(\frac{1}{ns_{i}}\right)\right)$$

$$f(\rho) = \int_{0}^{1/\rho} \frac{ds}{\tau(s)} \qquad s_{i} = x_{i-1} - x_{i}$$

#### **The Science of Conventional Traffic**

Anisotropy → Follow-the-Leader Models

n identical particles of mass 1/n, moving on a straight line

$$\dot{x}_{i} = v_{i}$$

$$\dot{v}_{i} = \frac{n(v_{i-1} - v_{i})}{\tau(ns_{i})} - k\left(v_{i} - f\left(\frac{1}{ns_{i}}\right)\right)$$

$$f(\rho) = \int_{0}^{1/\rho} \frac{ds}{\tau(s)} \qquad s_{i} = x_{i-1} - x_{i}$$

$$\dot{x}_i = f\left(\frac{1}{ns_i}\right)$$

### **Questions**

What will be the equations for automated vehicles?

### **Questions**

What will be the equations for automated vehicles?

What will happen if we allow lane-free movement?

#### **Questions**

What will be the equations for automated vehicles?

What will happen if we allow lane-free movement?

What will happen if we allow nudging?

### Idea

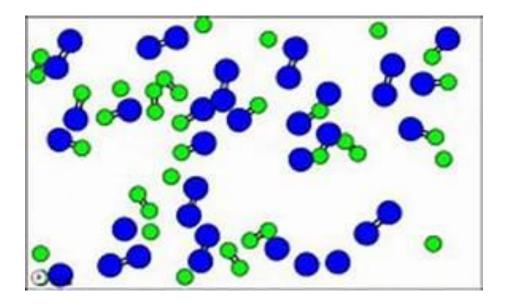
Lane-free movement and nudging?

This reminds us something...

### Idea

Lane-free movement and nudging?

This reminds us something...



It's like having molecules of a fluid!!

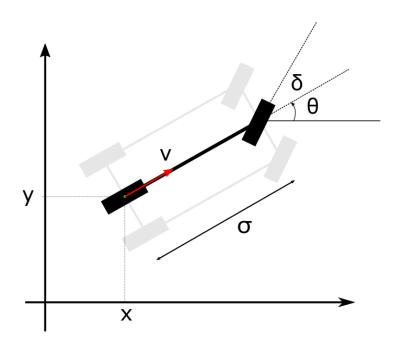
But fluid equations are isotropic!!

#### **Conclusion:**

We have to think everything from scratch...

#### Let's start from the basics

The bicycle kinematic model



$$\dot{x}_i = v_i \cos(\theta_i)$$

$$\dot{y}_i = v_i \sin(\theta_i)$$

$$\dot{\theta}_i = \sigma_i^{-1} v_i \tan(\delta_i)$$

$$\dot{v}_i = F_i$$

## **A simplification**

$$\delta_i = \arctan\left(\frac{\sigma_i u_i}{v_i}\right), i = 1, ..., n$$

$$\dot{x}_i = v_i \cos(\theta_i)$$

$$\dot{y}_i = v_i \sin(\theta_i)$$

$$\dot{\theta}_i = u_i$$

$$\dot{v}_i = F_i$$

for i = 1,...,n, where  $u_i$  and  $F_i$  are the inputs of the system

Let's assume the simplest road

$$\left\{ (x,y) \in \mathbb{R}^2 : \left| y \right| < a \right\}$$

Distance between vehicles

$$d_{i,j} := \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
, for  $i, j = 1,...,n$ 

1) Each vehicle should never leave the road

$$|y_i(t)| < a$$

1) Each vehicle should never leave the road

$$|y_i(t)| < a$$

2) The vehicles should never collide with each other

$$d_{i,j}(t) > L_{i,j}$$

1) Each vehicle should never leave the road

$$|y_i(t)| < a$$

2) The vehicles should never collide with each other

$$d_{i,j}(t) > L_{i,j}$$

3) The vehicles should respect the speed limit of the road

$$v_i(t) < v_{\text{max}}$$

1) Each vehicle should never leave the road

$$|y_i(t)| < a$$

2) The vehicles should never collide with each other

$$d_{i,j}(t) > L_{i,j}$$

3) The vehicles should respect the speed limit of the road

$$v_i(t) < v_{\text{max}}$$

4) The orientation angles of the vehicles should be bounded

$$\left|\theta_i(t)\right| < \varphi < \frac{\pi}{2}$$

5) The vehicles should never go backwards

$$0 < v_i(t)$$

5) The vehicles should never go backwards

$$0 < v_i(t)$$

6) The accelerations must be bounded

$$|F_i(t)| \le F_{\text{max}}$$

The 6<sup>th</sup> constraint is different: input constraint

5) The vehicles should never go backwards

$$0 < v_i(t)$$

6) The accelerations must be bounded

$$\left|F_i(t)\right| \le F_{\max}$$

The 6<sup>th</sup> constraint is different: input constraint

7) If possible: 
$$\lim_{t \to +\infty} (v_i(t)) = v^*$$
,  $\lim_{t \to +\infty} (\theta_i(t)) = \lim_{t \to +\infty} (u_i(t)) = \lim_{t \to +\infty} (F_i(t)) = 0$ 

### The state space

The state: 
$$w = (x_1, ..., x_n, y_1, ..., y_n, \theta_1, ..., \theta_n, v_1, ..., v_n) \in \mathbb{R}^{4n}$$

The state space:

$$\Omega := \begin{cases} x_i \in \mathbb{R}, |y_i| < a, i = 1, ..., n \\ w \in \mathbb{R}^{4n} : v_i \in (0, v_{\text{max}}), |\theta_i| < \varphi, i = 1, ..., n \\ d_{i,j} > L_{i,j}, i, j = 1, ..., n, j \neq i \end{cases}$$

An open set (not diffeomorphic to  $\mathbb{R}^{4n}$ )

8) Two vehicles should not interact if they are sufficiently distant

- 8) Two vehicles should not interact if they are sufficiently distant Consequences:
  - a) Measurements only from adjacent vehicles
  - b) A non-compact set of equilibria

- 8) Two vehicles should not interact if they are sufficiently distant
- Consequences:
  - a) Measurements only from adjacent vehicles
  - b) A non-compact set of equilibria

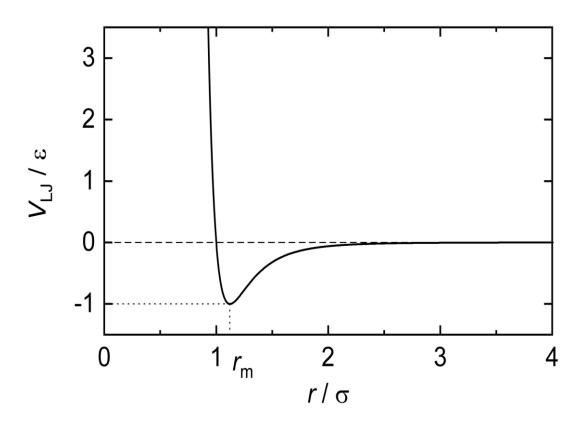
State space being an open set and a non-compact set of equilibria?

A case rarely studied in

NONLINEAR CONTROL THEORY

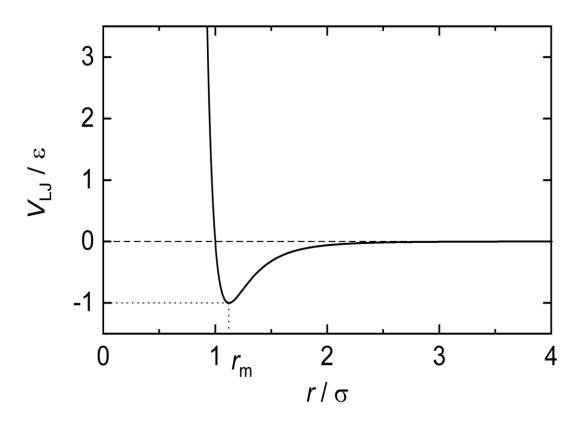
# How nature does the job?

By means of potential functions!!



### How nature does the job?

By means of potential functions!!

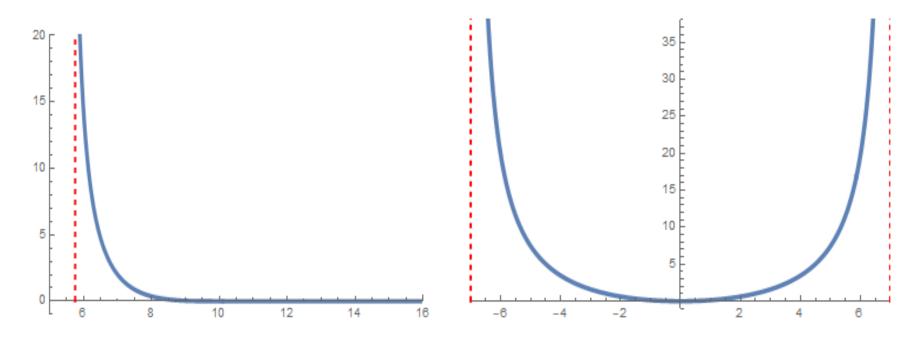


So, let's imitate nature!

#### Idea!

Think of vehicles as "particles"-"molecules" (n-body problem)

Use potential functions to avoid collisions and escape from the road



 $\lambda > L_{i,j} \rightarrow$  interaction distance

Use some kind of "mechanical energy" of the "particles" as a Lyapunov function

### **Lyapunov Function**

$$H(w) = \sum_{i=1}^{n} U_i(y_i) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j \neq i} V_{i,j}(d_{i,j})$$
  $\rightarrow$  Potential energy

$$+\frac{1}{2}\sum_{i=1}^{n}\frac{\left(v_{i}\cos(\theta_{i})-v^{*}\right)^{2}+bv_{i}^{2}\sin^{2}(\theta_{i})}{v_{i}\left(v_{\max}-v_{i}\right)} \rightarrow \text{"Relativistic" kinetic energy}$$

$$+A\sum_{i=1}^{n} \left( \frac{1}{\cos(\theta_i) - \cos(\varphi)} - \frac{1}{1 - \cos(\varphi)} \right) \rightarrow \text{Penalty term}$$

When  $w \to \partial \Omega$  then  $H(w) \to +\infty$ 

$$F_i = -\frac{1}{q(v_i, \theta_i)} f(v_i \cos(\theta_i) - v^*)$$

→ Friction term/relaxation term

$$F_i = -\frac{1}{q(v_i, \theta_i)} f(v_i \cos(\theta_i) - v^*)$$

$$-\frac{1}{q(v_i,\theta_i)} \sum_{j \neq i} V'_{i,j} \left(d_{i,j}\right) \frac{x_i - x_j}{d_{i,j}}$$

→ Friction term/relaxation term

→ Repulsion term/pressure term

$$F_i = -\frac{1}{q(v_i, \theta_i)} f(v_i \cos(\theta_i) - v^*)$$

$$-\frac{1}{q(v_i,\theta_i)} \sum_{j\neq i} V'_{i,j} \left(d_{i,j}\right) \frac{x_i - x_j}{d_{i,j}}$$

→ Repulsion term/pressure term

$$-\frac{1}{q(v_i, \theta_i)} \sum_{j \neq i} \kappa(d_{i,j}) \left( v_i \cos(\theta_i) - v_j \cos(\theta_j) \right) \rightarrow \text{Viscosity term}$$

$$F_i = -\frac{1}{q(v_i, \theta_i)} f(v_i \cos(\theta_i) - v^*)$$

→ Friction term/relaxation term

$$-\frac{1}{q(v_i,\theta_i)} \sum_{j\neq i} V'_{i,j} \left(d_{i,j}\right) \frac{x_i - x_j}{d_{i,j}}$$

→ Repulsion term/pressure term

$$-\frac{1}{q(v_i, \theta_i)} \sum_{i \neq i} \kappa(d_{i,j}) \left( v_i \cos(\theta_i) - v_j \cos(\theta_j) \right) \rightarrow \text{Viscosity term}$$

Moreover, there exists  $R \in K_{\infty}$  such that  $|F_i| \leq R(H(w))$ .

# The PRCC

$$\nabla H(w)\dot{w} = -\sum_{i=1}^{n} \left(v_{i}\cos(\theta_{i}) - v^{*}\right) f\left(v_{i}\cos(\theta_{i}) - v^{*}\right)$$

$$-\sum_{i=1}^{n} v_{i}\sin(\theta_{i}) f\left(v_{i}\sin(\theta_{i})\right)$$

$$-\frac{1}{2}\sum_{i=1}^{n} \sum_{j\neq i} \kappa\left(d_{i,j}\right) \left(v_{i}\cos(\theta_{i}) - v_{j}\cos(\theta_{j})\right)^{2}$$

$$-\frac{1}{2}\sum_{i=1}^{n} \sum_{j\neq i} \kappa\left(d_{i,j}\right) \left(v_{i}\sin(\theta_{i}) - v_{j}\sin(\theta_{j})\right)^{2}$$

$$|F_i(t)| \le R(H(w(0))) \le F_{\text{max}}$$

n identical particles of mass 1/n, same potentials, same distance metrics, moving on a straight line

$$\begin{aligned} s_{i} &= x_{i-1} - x_{i} \\ \dot{x}_{i} &= v_{i} \\ q(v_{i})\dot{v}_{i} &= -f(v_{i} - v^{*}) \\ &+ n(V'(ns_{i}) - V'(ns_{i+1})) \\ &+ n^{2}(\kappa(ns_{i})(v_{i-1} - v_{i}) - \kappa(ns_{i+1})(v_{i} - v_{i+1})) \end{aligned}$$

$$q(v) = \frac{v_{\text{max}}^{3}(v + v^{*}) - 2v_{\text{max}}^{2}v^{*}v}{2(v_{\text{max}} - v)^{2}v^{2}}$$

ISOTROPY!!—LIKE REAL FLUIDS!!

Continuity equation:  $\rho_t + (\rho v)_x = 0$ 

Velocity equation: 
$$q(v)(v_t + vv_x) + \rho^{-1}P'(\rho)\rho_x = \rho^{-1}(\mu(\rho)v_x)_x - f(v-v^*)$$

Navier-Stokes: 
$$v_t + vv_x + \rho^{-1}P'(\rho)\rho_x = \rho^{-1}(\mu(\rho)v_x)_x - \gamma(\rho,v)v$$

Differences:

 $q(v) \rightarrow$  the effect of "relativistic" kinetic energy; appears in relativistic fluid mechanics

Friction terms:  $-f(v-v^*)$  instead of  $-\gamma(\rho,v)v$ 

We can design our own fluid!!

$$P(\rho) = z - V'\left(\frac{1}{\rho}\right), \, \rho \in (0, \rho_{\text{max}})$$

$$\mu(\rho) = \frac{1}{\rho} \kappa \left(\frac{1}{\rho}\right), \, \rho \in (0, \rho_{\text{max}})$$

$$\rho_{\text{max}} = \frac{1}{L}$$

$$\mu(\rho) = P'(\rho) = 0 \text{ for } 0 < \rho \le \overline{\rho} = \frac{1}{\lambda}, \lim_{\rho \to \rho_{\text{max}}^-} (P(\rho)) = +\infty$$

|                     | Human Drivers                  | Automated Vehicles                                                                   |
|---------------------|--------------------------------|--------------------------------------------------------------------------------------|
| Continuity Equation | $\rho_t + (\rho v)_x = 0$      |                                                                                      |
| Reduced             | LWR:                           | $v = \beta^{-1} \left( -\rho^{-2} \mu(\rho) \rho_x \right),$                         |
| Model               | $v = f(\rho),$                 | $\rho \in (0, \rho_{\text{max}}), v \in (0, v_{\text{max}})$                         |
|                     | $\rho > 0, \nu > 0$            |                                                                                      |
| Velocity            | ARZ:                           | $\left  \beta'(v) \left( v_t + v v_x \right) + k \rho^{-2} \mu(\rho) \rho_x \right $ |
| Equation            | $v_t + (v + \rho f'(\rho))v_x$ | $= \rho^{-1} (\mu(\rho) v_x)_x - k \beta(v)$                                         |
|                     | $=-k(v-f(\rho))$               | $\rho \in (0, \rho_{\text{max}}), v \in (0, v_{\text{max}})$                         |
|                     | $\rho > 0, v \in \mathbb{R}$   | ( 111111 ) ( 111111 )                                                                |
| Derived equation    | $s_t + vs_x = -ks,$            | $s_t + vs_x = -ks,$                                                                  |
|                     | $s = v - f(\rho)$              | $s = \beta(v) + \rho^{-2}\mu(\rho)\rho_x$                                            |

I. K., D. Theodosis and M. Papageorgiou, "Constructing Artificial Traffic Fluids by Designing Cruise Controllers", *Systems & Control Letters*, 167 (2022), 105317.

I. K., D. Theodosis and M. Papageorgiou, "Constructing Artificial Traffic Fluids by Designing Cruise Controllers", *Systems & Control Letters*, 167 (2022), 105317.

#### **NEWTONIAN CONTROLLERS IN:**

I. K., D. Theodosis and M. Papageorgiou, "Lyapunov-based Two-Dimensional Cruise Control of Autonomous Vehicles on Lane-Free Roads", *Automatica*, 145 (2022), 110517.

I. K., D. Theodosis and M. Papageorgiou, "Constructing Artificial Traffic Fluids by Designing Cruise Controllers", *Systems & Control Letters*, 167 (2022), 105317.

#### **NEWTONIAN CONTROLLERS IN:**

I. K., D. Theodosis and M. Papageorgiou, "Lyapunov-based Two-Dimensional Cruise Control of Autonomous Vehicles on Lane-Free Roads", *Automatica*, 145 (2022), 110517.

#### RING ROADS OF CONSTANT WIDTH:

D. Theodosis, I. K. and M. Papageorgiou, "Cruise Controllers for Lane-Free Ring-Roads Based on Control Lyapunov Functions", *Journal of the Franklin Institute*, 360 (2023), 6131-6166.

NUMERICAL SCHEMES FOR THE NONLINEAR HEAT EQUATION

$$\rho_t + \left(\rho \beta^{-1} \left(-\rho^{-2} \mu(\rho) \rho_x\right)\right)_x = 0$$

D. Theodosis, I. K., G. Titakis, I. Papamichail and M. Papageorgiou, "A nonlinear heat equation arising from automated-vehicle traffic flow models", *Journal of Computational and Applied Mathematics*, 437 (2024), 115443.

#### NUMERICAL SCHEMES FOR THE NONLINEAR HEAT EQUATION

$$\rho_t + \left(\rho \beta^{-1} \left(-\rho^{-2} \mu(\rho) \rho_x\right)\right)_x = 0$$

D. Theodosis, I. K., G. Titakis, I. Papamichail and M. Papageorgiou, "A nonlinear heat equation arising from automated-vehicle traffic flow models", *Journal of Computational and Applied Mathematics*, 437 (2024), 115443.

#### WHAT KIND OF STABILITY DO WE HAVE?

I. K., D. Theodosis and M. Papageorgiou, "Stability analysis of nonlinear inviscid microscopic and macroscopic traffic flow models of bidirectional cruise-controlled vehicles", *IMA Journal of Mathematical Control and Information*, 39 (2022), 609-642.

The case of variable-width roads with possible on-ramps and off-ramps in

I. K., D. Theodosis and M. Papageorgiou, "Forward Completeness and Applications to Control of Automated Vehicles", submitted to *IEEE TAC* (see also arXiv:2307.11515 [math.OC]).

each vehicle moves within its own (curved) corridor

each vehicle has its own desired speed + all features of the controllers in the constant-width case

The case of variable-width roads with possible on-ramps and off-ramps in

I. K., D. Theodosis and M. Papageorgiou, "Forward Completeness and Applications to Control of Automated Vehicles", submitted to *IEEE TAC* (see also <u>arXiv:2307.11515 [math.OC]</u>).

each vehicle moves within its own (curved) corridor

each vehicle has its own desired speed + all features of the controllers in the constant-width case

cases where vehicles with a large (or small) desired speed may prefer (or be restricted) to be in the left (or right) side of the road.

#### IS THE DERIVATION RIGOROUS?

Very deep question, related to Hilbert's 6th problem (currently unsolved)

A similar problem

n identical NEWTONIAN particles of mass 1/n, same potentials, moving on a straight line

$$\begin{aligned} s_{i} &= x_{i-1} - x_{i} \\ \dot{x}_{i} &= v_{i} \\ \dot{v}_{i} &= n \left( V'(ns_{i}) - V'(ns_{i+1}) \right) \\ &+ n^{2} \left( \kappa(ns_{i})(v_{i-1} - v_{i}) - \kappa(ns_{i+1})(v_{i} - v_{i+1}) \right) \end{aligned}$$

$$\kappa(s) > 0$$
 for all  $s > 0$ 

Do we get a (weak) solution of the 1-D compressible Navier-Stokes equations

$$\rho_t + (\rho v)_x = 0$$

$$v_t + vv_x + \rho^{-1} P'(\rho) \rho_x = \rho^{-1} (\mu(\rho) v_x)_x$$

as 
$$n \to +\infty$$
 with  $P(\rho) = z - V'\left(\frac{1}{\rho}\right)$ ,  $\mu(\rho) = \frac{1}{\rho}\kappa\left(\frac{1}{\rho}\right)$  for  $\rho > 0$ ?

Do we get a (weak) solution of the 1-D compressible Navier-Stokes equations

$$\rho_t + (\rho v)_x = 0$$

$$v_t + vv_x + \rho^{-1}P'(\rho)\rho_x = \rho^{-1}(\mu(\rho)v_x)_x$$

as 
$$n \to +\infty$$
 with  $P(\rho) = z - V'\left(\frac{1}{\rho}\right)$ ,  $\mu(\rho) = \frac{1}{\rho}\kappa\left(\frac{1}{\rho}\right)$  for  $\rho > 0$ ?

# **ANSWER: YES!!!**

I. K. and M. Papageorgiou, "A particle method for 1-D compressible fluid flow", to appear in *Studies in Applied Mathematics* (see also <u>arXiv:2301.04553</u> [math.AP]).

Just some of the foundations of the new science

Many more to be done...

# **THANK YOU!**